MODEL OUTPUT STATISTICS DENGAN PRINCIPAL COMPONENT REGRESSION, PARTIAL LEAST SQUARE REGRESSION, DAN RIDGE REGRESSION UNTUK KALIBRASI PRAKIRAAN CUACA JANGKA PENDEK

نویسندگان

چکیده

Penelitian ini merupakan upaya pengembangan Model Output Statistics (MOS) yang akan digunakan sebagai alat kalibrasi prakiraan cuaca jangka pendek. Informasi mengenai akurat diharapkan dapat meminimalkan risiko kecelakaan disebabkan oleh cuaca, khususnya dalam bidang transportasi udara dan laut. Metode dikembangkan mencakup beberapa stasiun pengamatan di Indonesia. MOS sebuah metode berbasis regresi mengoptimalkan hubungan antara observasi luaran model Numerical Weather Predictor (NWP). Beberapa masalah muncul kaitannya dengan adalah; mereduksi dimensi NWP, mendapatkan variabel prediktor mampu menjelaskan variabilitas respon, menentukan statistik sesuai karakteristik data, sehingga menggambarkan respon prediktor. Tujuan dari penelitian yaitu untuk pemodelan suhu maksimum, minimum, kelembapan udara. adalah Principal Component Regression (PCR), Partial Least Square (PLSR), ridge regression. Selanjutnya, terbentuk divalidasi kriteria Root Mean Error (RMSE) Percentage Improval (IM%). mengoreksi bias NWP hingga lebih 50%. Berdasarkan RMSE terkecil pada ini, maksimum diprakirakan menggunakan PLSR, sementara minimum regression.Kata Kunci: MOS, NWP.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Least Square Regression PLS-Regression

PLS regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. Its goal is to predict or analyze a set of dependent variables from a set of independent variables or predictors. This prediction is achieved by extracting from the predictors a set of orthogonal factors called latent variables which have the best predictive pow...

متن کامل

Robust Principal Component Regression

In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...

متن کامل

Forecast comparison of principal component regression and principal covariate regression

Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. This paper compares two methods for dealing with many predictors, that is, principal component regression (PCR) and principal covariate regression (PCovR). The forecast performance of these methods is compared by simulating data from factor models and from regression models. The simulations show that, ...

متن کامل

Improving plant biomass estimation in the field using partial least squares regression and ridge regression

Estimating primary productivity over time is challenging for plant ecologists. The most accurate biomass measurements require destructive sampling and weighing. This is often not possible for manipulative studies that involve repeatedmeasures over time, or for studies in protected areas. Estimates of aboveground plant biomass using allometric equations or linear regression on single plant trait...

متن کامل

Partial least squares methods: partial least squares correlation and partial least square regression.

Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Matematika Unand

سال: 2021

ISSN: ['2721-9410', '2303-291X']

DOI: https://doi.org/10.25077/jmu.10.3.355-368.2021